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Abstract 

We consider the problem of approximating function in a general domain in one 
and two dimensions using piecewise polynomial interpolation. We propose an error 
estimator and show how to adaptively determine the interpolation degree. Numerical 
examples are given. 
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I Introduction 

Polynomial interpolation is an important tool in approximating functions. The optimal 
interpolation in an interval was under much study and was resolved with the proof of the 
Erdös-Bernstein conjecture [4] [5]. However, few attempts have been made to address the 
optimal polynomial interpolation in the triangle and in the tetrahedron. In [2] [3], we have 
computed the positions of the mean optimal interpolation sets in the triangle and in the 
tetrahedron. The mean optimal sets are close to optimal in the uniform norm and are shown 
to have the smallest Lebesgue constants among currently known interpolation sets. They 
perform well in many applications. They have been successfully used in the p-version of the 
Finite Element Method. 

In this paper, we consider the problem of approximating function in a general domain 
in one and two dimensions using polynomial interpolation. We assume that the domain 
is partitioned into standard subdomains, i.e., into intervals and triangles. In each subdo- 
main, we approximate the function using the polynomial interpolation points given in [2]. 
In a partitioned domain, interpolation using the same polynomial degree in every standard 
subdomain leads to continuous piecewise polynomial. Nevertheless, uniform distribution of 
degree is usually not economical. In addition, in boundary value problems, small polynomial 
degree is desired in approximating the essential boundary condition for an efficient imple- 
mentation of the Finite Element Method. We address the question of how to determine the 
optimal degree of polynomial interpolation in each subdomain to yield the most efficient 
approximation. 

In section 2, we review the theory of polynomial interpolation and summarize the main 
results in [2] and [3]. In section 3, we introduce an effective error estimator and present an 
adaptive procedure for determining the polynomial interpolation degree in each subdomain 
in R1 and R2. We present an algorithm to ensure the continuity of the interpolated piecewise 
polynomial for a nonuniform distribution of degree. 

II On Interpolation 

2.1    Interpolation in an interval 

Let I = ( —1,1) and C(l) be the space of continuous functions. Let C(l) be equipped with the 
norm ||/||oo = max^j \f(t)\. Further let Vn C C(l) be the set of polynomials of degree n. Let 
Tn = (TQ,T?, ..., T£) with -1 = rft < Tf < ... < T£ = 1. Then by £Tn we denote the mapping 
C(I) -+ Vn: Pn = CTnf such that Pn(Tn,f,t) G Vn and pn{TnJ,rJ) = f(r?)J = l,...,n. 
Obviously pn(T

n,f) is uniquely determined and £T" is a projection. Denote now 

\(T) = \\£T4oo = suPfJ%(^. (2.1) 

Let 

Lk(T
n,t)=    ft   (-4^).fc = 0,...,n (2.2) 



be the Lagrange Polynomials associated with the set Tn. It is easy to show that 

A(T) = ||i>rWIIL. (2-3) 
fc=0 

In addition, we introduce 

ll^r)||oo = (/1El^mO|2^)"- (2-4) 
J~lfc=0 

Let / € C(I) be given and let pn(f,t) G Vn be arbitrary, then 

||/-^r/||oo<(l + A(Tn))||/-pri||00. (2.5) 

(2.5) shows that the interpolation error is up to a constant (1 + A(T")) the same as the 
error of the best approximation and hence small \(Tn) is desirable. Further (2.5) also shows 
that the roundoff error 6 (or error of any other kind) in f{rf) leads to the increase of the 
interpolation error at most by X(Tn)0. This observation will be used in section 3. 

Remark. Although (2.5) is only an upper estimate, it can be shown that if A(T") rapidly 
grows as n —> oo, the interpolation can diverge. 

Our aim in [2] [3] was to determine the optimal points T"pt which leads to the best 
interpolation. Of course the term "best" has to be defined. For survey of the literature, we 
refer to [2] [6] [7] [9]. For the purpose of this paper, we say that Tn is optimal if A(T") is 
minimal. More precisely, we denote by T0"t such that A„ = A(T^t) = inf A(Tn), where inf is 
taken over all interpolations T™. It can be shown that the set T™pt exists and its characteristic 
properties are known as the Erdös-Bernstein conjecture. The conjecture is proved in [4] [5] 
The points T£pt and A„ can be computed numerically. For more details, see [2]. 

Although we have addressed above only one dimensional case, (2.1) (2.2) (2.5) hold 
in 2 and 3 dimensions too(with obvious modifications to the definition of the Lagrange 
polynomials (2.2) and the integral in (2.4)). 

Given T? and T2", we say If is worse than T2" if A(Tf) > A(T2
n). If is close to T2

n if 
A(Tjn) « A(T2"). This comparison criterion between two sets Tn is useful because A(Tn) can 
be easily computed. In contrast the optimal set T™pt is very hard to find especially in 2 and 
3 dimensions. No algorithm for locating T™ t is known in 2 and 3 dimensions. Hence in the 
literature, various approaches to find approximate optimal sets were proposed and studied 
(see e.g., [2]). The above criterion gives a characteristic way for selecting the best known set. 

If we minimize (2.4) instead of (2.3), we get the mean optimal set T/V T7U is much 
easier to compute numerically. In [2] [3] we have shown thatT/Jn in 2 and 3 dimensions is 
better than any proposed sets thus far in the literature. In one dimension, T"pt and A„ are 
known, we can compare A(27Q) with An or with the Lebesgue constant of any other set. TJU 
in fact is quite close to T^pt in the sense that A(T^) is close to A„. 

Remark. We defined here only the set T/%. Other expressions can be used in the 
minimization procedure to construct optimal sets. For some of the computed optimal sets, 
see e.g., [2]). However, T7U appears to be the easiest to compute among proposed optimal 
sets. 



Table 2.1: The Lebesgue constant and coordinates of the optimal set and the mean optimal 
set in the interval. Since both sets are symmetrical, only interior positive coordinates are 
listed. 

n A(T;pi) A(%)-A(T;) -'■opt 
rpn 
1(C) 

3 1.42291957 0.03249 0.4177913013559897 0.4306648 

4 1.55949021 0.03269 0.6209113046899123 0.6363260 

5 1.67221037 0.04662 0.2689070447719729 

0.7341266671891752 

0.2765187 

0.7485748 

6 1.76813458 0.04628 0.4461215299911067 

0.8034402382691066 

0.4568660 

0.8161267 

7 1.85159939 0.05345 0.1992877299056662 

0.5674306027472533 
0.8488719610366557 

0.2040623 

0.5790145 

0.8598070 

8 1.92545762 0.05312 0.3477879716116667 
0.6535334790799030 

0.8802308527184540 

0.3551496 

0.6649023 

0.8896327 

9 1.99168499 0.05746 0.1585652886576400 
0.4601498259228992 

0.7166138606253078 

0.9027709752917726 

0.1618052 

0.4687316 
0.7273222 

0.9108842 

10 2.05170576 0.05718 0.2848880010669259 
0.5466676961746040 

0.7640984545671450 

0.9195087517942991 

0.2901556 

0.5556701 
0.7739904 

0.9265519 

11 2.10658026 0.06007 0.1317518400537555 
0.3862684522940377 
0.6144355426143385 
0.8006822662356081 
0.9322747830229179 

0.1340857 
0.3927173 
0.6234070 
0.8097370 
0.9384302 

12 2.15711897 0.05985 0.2412235692922764 
0.4684175059008267 

0.6683666194633162 

0.8294354799669058 

0.9422316279551781 

0.2451541 
0.4754842 

0.6770614 

0.8376926 

0.9476477 

13 2.20395521 0.06191 0.1127327065284049 
0.3325418228947248 
0.5356654831037281 

0.7119103140476186 
0.8524275899174107 
0.9501460608151026 

0.1144909 
0.3375168 
0.5429843 

0.7202033 
0.8599508 
0.9549426 



n KTopt) A(T£0"ACO nnn 
1opt 

rpn 
1(C) 

14 2.24759321 0.06173 0.2091510118057353 
0.4091565377641974 

0.5912705457477183 
0.7475281167521386 

0.8710916063656573 
0.9565402633332384 

0.2121872 

0.4147776 

0.5986083 
0.7553639 
0.8779513 
0.9608141 

15 2.28844092 0.06328 0.0985298474573020 

0.2918015306737818 
0.4738546882316757 
0.6376896724307452 
0.7770061889653626 
0.8864437409774569 

0.9617797380927199 

0.0999008 
0.2957382 
0.4798402 
0.6449010 
0.7843697 
0.8927090 
0.9656095 

16 2.32683304 0.06313 0.1845990864374410 
0.3629096640933456 

0.5288572896841651 
0.6767882780854777 
0.8016617897222662 

0.8992200402941425 

0.9661264749901083 

0.1870111 
0.3674590 
0.5350106 

0.6837852 
0.8085605 
0.9049549 

0.9695763 

17 2.36304752 0.06432 0.0875146934912087 
0.2598842018797722 

0.4243548709184729 
0.5759276542381555 

0.7099951678453442 

0.8224812942273985 
0.9099637674997672 

0.9697722141026608 

0.0886130 
0.2630690 
0.4293012 

0.5821132 

0.7167274 

0.8289349 

0.9152259 
0.9728948 

18 2.39731771 0.06420 0.1652019161293088 
0.3258963986012215 
0.4776989334135101 
0.6164674680899757 
0.7384152664484192 
0.8402138571728484 
0.9190827139401264 

0.9728598818330955 

0.1671625 
0.3296409 
0.4828825 
0.6225929 
0.7448572 

0.8462483 
0.9239234 

0.9756989 

19 2.42984142 0.06515 0.0787200614528085 
0.2342214072823386 
0.3839541516755896 
0.5242304777869164 

0.6515953324320913 

0.7629113849148811 
0.8554359734390852 
0.9268876556810802 

0.0796194 

0.2368471 
0.3880920 

0.5295337 
0.6575991 
0.7690531 

0.8610795 
0.9313521 

i" 
0.9754977704558682 0.9780895 



In table 2.1, we give T^, Tfc and AB, A(T£>). Because T?pt, Tfa are symmetrical, we only 
give the interior positive coordinates, i.e., negative coordinates and points on the boundary 
(r0 = -1 and rn = 1) and the center (rn/2 = 0 for even degree) are not listed. 

2.2    Interpolation in the triangle 

Consider now the standard triangle S2 = {(x,y) :x>0,y> 0,1-x-y > 0}. (x,y,l-x-y) 
are called the barycentric coordinates for the triangle. We denote them as (&i,&2,&3)- We 

seek the set of interpolation points which minimize (2.4) written in the two dimensional 
form. Analogous to the one dimensional case where we constrain the points T£ and r£ on 
the boundary of I, we use the points constructed in section 2.1 as the interpolation points 
on the sides of S2. We then find the points inside S2 by minimizing (2.4) properly adjusted 
to the two dimensional case. We have shown in [2] that there are many local minima. We 
select the one which leads to the minimal \{Tn) among T" with various symmetries. We 
show that these points are the best points known today in the sense defined in section 2.1. 
We give T££) in table 2.2. 

Ill    The adaptive procedure 

3.1     The one dimensional case 

Let Ü = \a, b] be partitioned into elements e, = [4°, 4°]; l = l,-,m. We assume that the 
partition has the usual properties, i.e., z$+1_^ = z[l\ z[1] = a,z^m) = b. Let I = (-1,1) be 
the master element. A linear map ipi maps I onto e\. 

Let / € C(ft) be a continuous function on fl, f\ its constraint on e, and F,(£), |f| < 1 be 
the preimage of // on /. Using the interpolation points Tn> on /, we construct a polynomial 
Pni(T

n,,Fi,C) of degree n, and its image pn,(f,t),t € e,. Let n = (nu...,nm), then we 
denote Pn(f,t) the piecewise polynomial on tt such that pR = pn,(f,t),Vt e et. Since the 
interpolation points contain the end points of the interval, p„ is continuous. 

Let 
«»,(/) = 11/-P»,lkoo (3-1) 

and 
e„(/) =  max en,(f) = \\f -p„||n,oo- (3-2) — /=l,...,rn 

Given the tolerance e, our aim is to construct pjt) so that e„(/) < e. By definition, 
this is equivalent to have e„,(/) < e. Hence our aim is to construct adaptively an a 
posterior error estimator with the polynomial pn,{f,t) and Pn,(T

n',-F/,£) so that e/(F/) = 
HJFJ _ Pn.(T

n',F/)||/i00 < e. To do that, we need to have an error indicator r)(Pni,Fi). For 
ni > 2, we define: 

ijftPnpfi) = .  max    |F,(7f'-1) - Pn,^'-1)!, (3-3) 
j = l,...,ni-2 

ll^Fd = )=1 .ÜSä^, IflW) - A,W)h (3-4) 



Table 2.2: The Lebesgue constant and barycentric coordinates of the mean optimal set in 
the triangle. Points with symmetry are listed only once. Other Points are obtained by 
permuting the barycentric coordinates. ni,n3,nß are the number of points of singlet, three 
fold symmetry and six fold symmetry. 

n T~NT nx    n3    n6 

0      0      0 

3    2.1115     10 

4    2.6920     15 
1 
0 

5    3.3010     21      0 

7   4.3908     36     0 

8    5.0893     45     0 

0      0 

1      0 

1 
2 

6    3.7910     28      1      1 

6i 
1.0000000 
0.5000000 
1.0000000 
0.7251957 
0.3333333 
1.0000000 
0.8306024 
0.5000000 
0.2208880 
1.0000000 
0.8866427 
0.6431761 
0.1525171 
0.4168658 
1.0000000 
0.9194021 
0.7349105 
0.5000000 
0.3333333 
0.1097139 
0.3157892 
1.0000000 
0.9398927 
0.7957614 
0.6042138 
0.0817370 
0.4494208 
0.2663399 
0.2447528 
1.0000000 
0.9533797 
0.8375919 
0.6801403 
0.5000000 
0.0627331 
0.2153606 
0.3891297 
0.3657423 
0.1942206 

7 

0.0000000 
0.5000000 
0.0000000 
0.2748043 
0.3333333 
0.0000000 
0.1693976 
0.5000000 
0.2208880 
0.0000000 
0.1133573 
0.3568239 
0.1525171 
0.4168658 
0.0000000 
0.0805979 
0.2650895 
0.5000000 
0.3333333 
0.1097139 
0.5586077 
0.0000000 
0.0601073 
0.2042386 
0.3957862 
0.0817370 
0.4494208 
0.2663399 
0.6584392 
0.0000000 
0.0466203 
0.1624081 
0.3198597 
0.5000000 
0.0627331 
0.2153606 
0.3891297 
0.5524728 
0.7294168 

0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.3333333 
0.0000000 
0.0000000 
0.0000000 
0.5582239 
0.0000000 
0.0000000 
0.0000000 
0.6949657 
0.1662683 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.3333333 
0.7805723 
0.1256031 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.8365261 
0.1011584 
0.4673202 
0.0968080 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.8745338 
0.5692789 
0.2217406 
0.0817849 
0.0763626 



n A Nl    m nz    n^ 61 
9 5.9181  55  1 

10 7.0851  66  0 

11 8.3383  78  0 

1.0000000 

0.9626819 

0.8672666 
0.7361751 

0.5815151 

0.3333333 

0.0493729 

0.4658361 

0.1769439 
0.3020146 

0.1575680 
0.3261032 

1.0000000 
0.9693919 

0.8889846 
0.7782484 
0.6451372 

0.5000000 
0.0397231 
0.1477532 

0.4210577 
0.2859582 

0.3962235 

0.2531675 
0.1304041 
0.2760598 
1.0000000 
0.9743976 
0.9054668 
0.8104474 
0.6950282 

0.5665299 
0.0325950 
0.4754886 

0.1252588 

0.2469949 
0.3752681 
0.3404173 
0.2152428 

0.1097836 
0.3649733 
0.2363509 

0.0000000 

0.0373181 
0.1327334 

0.2638249 

0.4184849 
0.3333333 

0.0493729 

0.4658361 

0.1769439 
0.6309227 

0.7808733 
0.4887991 

0.0000000 
0.0306081 

0.1110154 

0.2217516 
0.3548628 
0.5000000 
0.0397231 
0.1477532 

0.4210577 

0.2859582 

0.5463689 
0.6909248 

0.8190269 
0.5678554 
0.0000000 
0.0256024 
0.0945332 
0.1895526 
0.3049718 
0.4334701 

0.0325950 
0.4754886 

0.1252588 

0.2469949 
0.3752681 
0.6107764 
0.7374393 

0.8480326 
0.4997724 
0.6303341 

0.0000000 

0.0000000 
0.0000000 

0.0000000 

0.0000000 
0.3333333 

0.9012542 

0.0683277 
0.6461122 

0.0670627 
0.0615587 
0.1850977 

0.0000000 
0.0000000 

0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.9205538 
0.7044935 

0.1578846 

0.4280837 

0.0574076 
0.0559077 

0.0505691 
0.1560848 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

0.0000000 
0.0000000 

0.9348099 
0.0490228 
0.7494824 

0.5060102 

0.2494638 
0.0488062 

0.0473178 

0.0421838 
0.1352543 
0.1333150 



n A Nl    m n3 n6 & 

12 10.082  91  1 

13 12.046 105  0  6  8 

1.0000000 
0.9782397 

0.9184891 
0.8356932 

0.7347400 
0.6208376 

0.5000000 

0.3333333 

0.0271978 
0.1075744 

0.4415257 

0.2152525 
0.4166350 
0.2954879 

0.1853001 

0.0937098 

0.3187835 

0.2045479 

0.3305135 

1.0000000 
0.9812954 

0.9289266 

0.8560408 
0.7665724 

0.6649507 
0.5559156 

0.0230602 

0.4816638 
0.0934032 

0.1893266 
0.4039822 
0.2969227 
0.3679120 

0.2590310 
0.1611020 
0.0809091 

0.3920816 

0.2807129 
0.1787576 

0.2928111 

0.0000000 
0.0217603 

0.0815109 

0.1643068 
0.2652600 
0.3791624 

0.5000000 

0.3333333 

0.0271978 
0.1075744 

0.4415257 

0.2152525 
0.5411712 
0.6624810 
0.7741774 

0.8706643 

0.5641899 

0.6802371 
0.4512984 

0.0000000 

0.0187046 
0.0710734 

0.1439592 
0.2334276 
0.3350493 
0.4440844 

0.0230602 

0.4816638 
0.0934032 
0.1893266 
0.4039822 
0.2969227 
0.5953680 
0.7043884 
0.8038486 

0.8887075 
0.5059948 

0.6169627 
0.7205294 

0.5148749 

0.0000000 
0.0000000 

0.0000000 

0.0000000 
0.0000000 
0.0000000 

0.0000000 

0.3333333 

0.9456044 
0.7848512 

0.1169486 
0.5694951 
0.0421938 
0.0420312 

0.0405225 

0.0356259 

0.1170266 

0.1152150 

0.2181880 

0.0000000 

0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 
0.0000000 

0.9538797 
0.0366724 

0.8131936 
0.6213469 

0.1920355 
0.4061545 
0.0367200 
0.0365805 
0.0350494 
0.0303834 

0.1019235 

0.1023245 
0.1007129 
0.1923141 



For n/ = 2, 
vl{Pn,=z,F,) = r?/2(P„,=2,F/) = max|F,(7f) - Pn,(rf)\ (3.5) 

Obviously, rj[ < r)l2 < \\F\ - Pn,(r
n',F/)||/)00 = e/. We recommend using rf2 since it is 

much more effective than r}[ especially for high degree interpolation. The idea behind the 
proposed form of the error indicator is the following: If the interpolation error in element 
e/ is too large, we increase the degree of the polynomial. Since in most cases, getting F/(r) 
is expensive(e.c/., in solid modeling, Fi is obtained using interrogation operators of the solid 
modeler),we use only the previously computed values F/(r"'_1) in the adaptive process. For 
degree 2, (3.3) and (3.4) are not defined, we use degree 3 points as in the error indicator. 
This increases a little computation time. Since the interpolation degree 3 is low, this is 
not a serious impediment. By this procedure, which is parallel, we construct the adaptive 
interpolation with n/ depending on the given tolerance and the function /. 

Note the optimal interpolation points used for interpolation satisfy — 1 < rf < rf'- < 
T2 < r^'_1 < ... < T™'~2 < Tn',-1 < 1. Therefore, the error indicator rj1 and rf never sample 
points in intervals (-1,7""') and (r™'^, 1). This can remedied by introducing new estimators 

r)}(PnnFt) =   max  \Ft(T?'+1) - Pn,(T?+1)\, (3.6) 
j = l,...,ni 

fftiP^Fi) = max(77/
1(P„„F/),77/

2(Pn„F/)). (3.7) 

However, Since interpolation points are denser near the end points than near the center, 
the intervals (-l,Tf') and (r"^,!) are quite small (compared to the average distance be- 
tween neighboring interpolation points). In most cases, the results of using rj${Pni,Fi) and 
fjf(PnnFi) are quite similar. However, fjf(Pn,,Fi) has the disadvantage of using higher de- 
gree information not computed previously in the adaptive process. When getting F/(r) is 
not expensive, it may be advantagious to use fjf(PnnFi) 

Example 3.1. Let Ü = [0,8], h = (0,2),/2 = (2,4),f3 = (4,6),Z4 = (6,8). Let / = 
fa-io^+i- ^n table 3.1, we report the values e/, 77/, rjf as a function of the polynomial degree 
n, 

We see that both error indicators are quite reliable. The effective indices(the ratio of the 
error indicator 77/ and the actual error e{) are near one. The second error indicator rjf is more 
effective than 77/. Although the effective indices are not far from one, we suspect they are 
not asymptotically exact, i.e., it does not approach to one as interpolation degree increases 
to infinity. 

We also see that uniform degree interpolation is not economical. In table 3.2, we give 
the optimal degree distribution for various tolerance e using rjf as the error estimator. 

Example 3.1 is typical and similar results are obtained for other test cases. 

3.2    The two dimensional case 

Let Q, C R2 be a closed polygonal domain partitioned into triangular elements e/ in the 
standard way. Let Ejf, k = 1,2,3 be the edges of e/ and let e be the tolerance. Further let D 
be the standard triangle and tpi maps D onto e/. As before, let / e C(Q) be a continuous 
function on 0, // its restriction on e\ and F\ its preimage on D. In exactly the same way as 
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Table 3.1: Errors and error indicators for example 3.1. 
n €l vl rkhi vi 41*1 C2 4 4/^2 rä f&hi 
2 0.27E-04 0.24E-04 0.87 0.24E-04 0.87 0.95E-04 0.82E-04 0.87 0.82E-04 0.87 
3 0.17E-05 0.15E-05 0.92 0.15E-05 0.92 0.74E-05 0.66E-05 0.90 0.66E-05 0.90 
4 0.10E-06 0.88E-07 0.86 0.88E-07 0.86 0.57E-06 0.48E-06 0.85 0.48E-06 0.85 
5 0.61E-08 0.56E-08 0.91 0.56E-08 0.91 0.43E-07 0.38E-07 0.89 0.38E-07 0.89 
6 0.36E-09 0.33E-09 0.91 0.35E-09 0.97 0.32E-08 0.29E-08 0.89 0.31E-08 0.96 
7 0.21E-10 0.19E-10 0.91 0.21E-10 0.98 0.24E-09 0.21E-09 0.88 0.23E-09 0.97 
8 0.12E-11 0.11E-11 0.92 0.12E-11 0.94 0.17E-10 0.15E-10 0.90 0.16E-10 0.94 
9 0.71E-13 0.64E-13 0.91 0.68E-13 0.96 0.12E-11 0.11E-11 0.89 0.11E-11 0.96 
n ^3 4 »73 As ni vi/tz C4 V\ Vl /«4 rii nil^ 
2 0.49E-03 0.42E-03 0.86 0.42E-03 0.86 0.50E-02 0.42E-02 0.84 0.42E-02 0.84 
3 0.52E-04 0.45E-04 0.86 0.45E-04 0.86 0.75E-03 0.60E-03 0.80 0.60E-03 0.80 
4 0.54E-05 0.44E-05 0.83 0.44E-05 0.83 0.10E-03 0.82E-04 0.81 0.82E-04 0.81 
5 0.54E-06 0.45E-06 0.84 0.45E-06 0.84 0.11E-04 0.99E-05 0.87 0.99E-05 0.87 
6 0.52E-07 0.45E-07 0.86 0.49E-07 0.94 0.97E-06 0.93E-06 0.96 0.96E-06 0.99 
7 0.49E-08 0.41E-08 0.85 0.47E-08 0.97 0.48E-07 0.41E-07 0.84 0.48E-07 0.99 
8 0.43E-09 0.38E-09 0.88 0.41E-09 0.93 0.26E-07 0.15E-07 0.60 0.22E-07 0.84 
9 0.37E-10 0.32E-10 0.87 0.36E-10 0.96 0.75E-08 0.51E-08 0.68 0.67E-08 0.89 

Table 3.2: Adaptive interpolation degrees and errors for various tolerances for example 3.1. 

e ^n «i Cl n2        e2 nz        e3 7l4 C4 

1.0E-3 7.50E-4 2 2.71E-5 2    9.46E-5 2    4.92E-4 3 7.50E-4 
1.0E-4 1.00E-4 2 2.71E-5 2    9.46E-5 3    5.22E-5 3 1.00E-4 
1.0E-5 1.15E-5 3 1.66E-6 3    7.40E-6 4    5.38E-6 5 1.15E-5 
1.0E-6 9.74E-7 4 1.02E-7 4    5.71E-7 5    5.37E-7 6 9.74E-7 
1.0E-7 1.02E-7 4 1.02E-7 5    4.33E-8 6    5.22E-8 7 4.84E-8 
1.0E-8 7.59E-9 5 6.12E-9 6    3.23E-9 7    4.88E-9 9 7.59E-9 

11 



in the one dimensional case, from the error indicator rp) (r}[ ,% ) defined analogous to (3.4), 
we construct a polynomial Pn,{Tn,,Fi) such that e(F,) = ||F, - Pn,(T

n<, Fi)\\eh00 « r[l) < e. 
By Pnv we denote the image of Pn, on e; and by p„(/, t), we denote the piecewise polynomial 
function on fi such that its restriction on e; is pnr 

In contrast to the one dimensional case, if the polynomial degrees for two elements sharing 
a common edge are different, Pn(f, t) is no longer continuous on the common edge. We need 
to modify pni in the adaptive procedure to construct a new piecewise polynomial pn so that 
on the common edge of the two elements pn is continuous. 

Note that during the adaptive process, the interpolation degree n/ for each element is 
given (starting from, say, n/ = 2 for all elements). We observe that on the common edge 
E = E^1 = 2?f2

2, both pE ,Pn,   are within tolerance e of the function F.   Therefore we 

use polynomial P^ where UE = min(n/nn/2) to approximate F on the common edge E. 
After interpolating the function with degree riß on every edge, we interpolate the function in 
each element e/ by the following procedure. For a node on edge E, we replace the function 
value F at that node with the value of the edge interpolated function P^ . For a node in 
the interior, we use the original function value F. By this procedure, which is parallel, we 
obtain a continuous polynomial pn of degree n; on e\. We have ||/ — pn||n,oo < e(l + A(T")) 
where n = maxne. The error ||/ — pn/||ei,n can be estimated by the error indicator. If 
11/ ~ Pn,lie,,oo < e is not satisfied for some element e/, we increase the approximation degree 
ni and continue the adaptive procedure. 

Remark. ||/ — p„||n,oo < e(l + A(Tn)) is an over estimate. Actually, let €\ = maxe^, 
where €E is the error on the edge E, e\ < e. then ||/ — p„||n,oo < e + A(Tn)ei. e\ is usually 
much samller than e because the Lebesgue function on the triangle edges is usually much 
smaller than the Lebesgue constant. The bound can further be made sharper. Therefore, 
11/ — .PrJ|n,oo < e is more likely to be satisfied. 

Example 3.2. Let Q = [0,4] x [0,4]. Q is partitioned into 8 triangles e\ = {(x,y) : x > 
0,2/ > 0,x + y < 2}, e2 = {{x,y) : x < 2,y < 0,x + y > 2}, e3 = ex + (2,0), e4 = e2 + (2,0), 
e5 = ei + (0,2), e6 = e2 + (0,2), e7 = ex + (2,2), e8 = e2 + (2,2). Let / = ((x+1)2+1)

1
((y+1)2+1)- 

In table 3.3 we show the error and error indicators for / — pnr For various tolerance e, the 
sequence of the adaptive approximation degree is given in table 3.4. We also report the error 
and the indicators for the adaptively determined pn using r]f. 

Note the error indicators in the triangle are usually not as effective as in the one dimen- 
sional case. 

Remark. Interpolation in domains partitioned into curvilinear elements is done in the 
same way as in the finite element method using pullback polynomial on the standard element. 

Remark. Often we have to impose an upper bound on the degree of used polynomials. If 
then the accuracy is not achieved, the mesh has to be refined in those elements where the 
desired accuracy is not achieved. 
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Table 3.3: Errors and error indicators for example 3.2. 
n Cl 4 >7i/ei nt vi/a ^2 4 r)ll £2 rii riihi 
2 0.97E-02 0.82E-02 0.84 0.82E-02 0.84 0.19E-02 0.16E-02 0.88 0.16E-02 0.88 
3 0.12E-02 0.12E-02 1.00 0.12E-02 1.00 0.27E-03 0.24E-03 0.90 0.24E-03 0.90 
4 0.25E-03 0.13E-03 0.52 0.13E-03 0.52 0.33E-04 0.24E-04 0.74 0.24E-04 0.74 
5 0.13E-03 0.53E-04 0.40 0.53E-04 0.40 0.19E-04 0.18E-04 0.95 0.18E-04 0.95 
6 0.41E-04 0.21E-04 0.51 0.25E-04 0.62 0.77E-05 0.52E-05 0.68 0.74E-05 0.96 
7 0.96E-05 0.55E-05 0.58 0.81E-05 0.84 0.23E-05 0.16E-05 0.69 0.20E-05 0.89 
8 0.20E-05 0.12E-05 0.58 0.18E-05 0.87 0.52E-06 0.34E-06 0.65 0.45E-06 0.85 
9 0.27E-06 0.17E-06 0.64 0.26E-06 0.94 0.85E-07 0.49E-07 0.57 0.78E-07 0.92 
n ^3 4 Vl/^3 rii 4/^ C4 rii r)l/e4 rii riil^A 
2 0.18E-02 0.16E-02 0.90 0.16E-02 0.90 0.70E-03 0.63E-03 0.90 0.63E-03 0.90 
3 0.24E-03 0.24E-03 1.00 0.24E-03 1.00 0.92E-04 0.92E-04 1.00 0.92E-04 1.00 
4 0.31E-04 0.12E-04 0.39 0.12E-04 0.39 0.12E-04 0.85E-05 0.72 0.85E-05 0.72 
5 0.16E-04 0.10E-04 0.62 0.10E-04 0.62 0.50E-05 0.39E-05 0.79 0.39E-05 0.79 
6 0.57E-05 0.42E-05 0.73 0.51E-05 0.88 0.20E-05 0.16E-05 0.83 0.19E-05 0.99 
7 0.15E-05 0.11E-05 0.72 0.13E-05 0.81 0.65E-06 0.42E-06 0.65 0.49E-06 0.75 
8 0.34E-06 0.23E-06 0.70 0.23E-06 0.70 0.17E-06 0.90E-07 0.54 0.12E-06 0.69 
9 0.46E-07 0.35E-07 0.75 0.36E-07 0.79 0.28E-07 0.13E-07 0.47 0.20E-07 0.71 
n «5 4 4/*5 

9 41^ ee rii 4/^6 rii riilts 
2 0.18E-02 0.16E-02 0.90 0.16E-02 0.90 0.70E-03 0.63E-03 0.90 0.63E-03 0.90 
3 0.24E-03 0.24E-03 1.00 0.24E-03 1.00 0.92E-04 0.92E-04 1.00 0.92E-04 1.00 
4 0.31E-04 0.12E-04 0.39 0.12E-04 0.39 0.12E-04 0.85E-05 0.72 0.85E-05 0.72 
5 0.I6E-04 0.10E-04 0.62 0.10E-04 0.62 0.50E-05 0.39E-05 0.79 0.39E-05 0.79 
6 0.57E-05 0.42E-05 0.73 0.51E-05 0.88 0.20E-05 0.16E-05 0.83 0.19E-05 0.99 
7 0.15E-05 0.11E-05 0.72 0.13E-05 0.81 0.65E-06 0.42E-06 0.65 0.49E-06 0.75 
8 0.34E-06 0.23E-06 0.70 0.23E-06 0.70 0.17E-06 0.90E-07 0.54 0.12E-06 0.69 
9 0.46E-07 0.35E-07 0.75 0.36E-07 0.79 0.28E-07 0.13E-07 0.47 0.20E-07 0.71 
n C7 n\ Vil^i n2 

V7 4hi eg vi Vl/es 4 v'i/ts 
2 0.18E-03 0.13E-03 0.71 0.13E-03 0.71 0.58E-04 0.49E-04 0.84 0.49E-04 0.84 
3 0.24E-04 0.17E-04 0.72 0.17E-04 0.72 0.78E-05 0.66E-05 0.85 0.66E-05 0.85 
4 0.30E-05 0.21E-05 0.68 0.21E-05 0.68 0.99E-06 0.79E-06 0.80 0.79E-06 0.80 
5 0.36E-06 0.26E-06 0.72 0.26E-06 0.72 0.14E-06 0.10E-06 0.72 0.11E-06 0.75 
6 0.39E-07 0.29E-07 0.73 0.30E-07 0.75 0.18E-07 0.11E-07 0.62 0.16E-07 0.91 
7 0.45E-08 0.29E-08 0.65 0.37E-08 0.82 0.21E-08 0.12E-08 0.56 0.19E-08 0.89 
8 0.45E-09 0.27E-09 0.59 0.36E-09 0.81 0.21E-09 0.12E-09 0.56 0.18E-09 0.84 
9 0.33E-10 0.19E-10 0.59 0.30E-10 0.91 0.17E-10 0.87E-11 0.52 0.15E-10 0.92 
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Table 3.4: Adaptive interpolation degrees and errors for various tolerances for example 3.2. 
e is the given tolerance. e„ is the error in Q. 

€ ni         ei rt2          €2 ™3             ^3 n4          €4 

l.OE-3 
l.OE-4 
l.OE-5 
l.OE-6 

4 0.25E-03 
5 0.13E-03 
7    0.96E-05 
9    0.27E-06 

3 0.26E-03 
4 0.41E-04 
6 0.78E-05 
8    0.52E-06 

3 0.24E-03 
4 0.31E-04 
6 0.57E-05 
8    0.34E-06 

2 0.70E-03 
3 0.92E-04 
4 1.08E-05 
7    0.66E-06 

e« ei          n2 ^2         n3 e3         nA C4 

0.70E-3 
0.92E-4 
1.08E-5 
0.66E-6 

3 0.24E-03 
4 0.31E-04 
6    0.57E-05 
8    0.34E-06 

2 0.70E-03 
3 0.92E-04 
4 1.08E-05 
7    0.66E-06 

2 0.18E-03 
3 0.24E-04 
4 0.30E-05 
5 0.36E-06 

2     0.58E-04 
2 0.59E-04 
3 0.78E-05 
4 1.01E-06 
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